Arc Blast – Part Two
By Andrew Hall
In “Arc Blast – Part One” we looked at how arc blast from current in the atmosphere could produce supersonic shock and wind effects that create a mountain. We examined triangular buttresses on mountainsides that exhibit the characteristic standing wave-form of a reflected shock wave. In particular, we looked at how they are layered perpendicular to the wind direction, and exhibit compression and expansion from superimposed longitudinal and transverse waves that came from a source above.
We now examine more, compelling evidence.
Harmonics . . .
The images below are color enhanced Schlieren photographs of reflected shock waves in a wind tunnel.
Wind tunnels typically show supersonic flow between two surfaces. The initial shock reflects from both walls, creating two triangular wave-forms adjacent to each other. The diamond patterns that form between the triangles are often called ‘shock diamonds’.
In the case where a supersonic shock wave is created in the air, it is unbounded above, so the only surface reflecting it is the ground, and it creates a row of triangles instead of two opposing rows.
The initial wind speed in the first frame (top left) is Mach 2. It shows the shock wave producing one and a half diamonds.
The wind tunnel is charged with gas in a pressure vessel. So, as the gas flow progresses, the pressure and mass flow decrease from the pressure vessel, lowering the Mach speed of the wind.
The subsequent frames shows instability in the shock waves as the winds slow. The wave-forms compress and the angles of the primary and reflected waves grow less acute.
Vertical shock waves form, called normal shocks, which travel through the triangles, distorting their shape where the normal wave crosses the reflected wave, causing more reflections. New smaller triangles form and replace the original standing wave. This is harmonic reflection of the primary shock wave.
In the final frame (bottom, right) the wind speed has slowed, the triangular wave-forms are smaller and higher frequency. There are seven shock diamonds where there were initially one and one half.
This sequence of harmonic reflection as the energy of the shock wave dissipates is evident on the triangular buttresses stacked on the sides of mountains. As seen in the images below, triangles are stacked upon triangles in harmonic multiples as the successive layers of material were deposited by supersonic winds, tunneled by the reflected shock waves.
The first image in this group is most instructive. In it, the lower-most layers of harmonic waveform can be seen to have begun to form at the outer edge of the preceding layer.
Instability, Interference and Cancellation . . .
Transients in wind speed, Mach angle and multiple reflections create instabilities in the wave-forms. Unstable waves segregate and fan away from each other under expansion, fragmenting the wave-forms.
Or they bunch together in compression, pressing waves against each other. Shock waves don’t cross, but fold against each other, like magnetic fields interfering.
As wave-fronts compress, the wave-form can be squeezed and cancelled-out. In this image of a mountain in Iran, three wave-forms compress, distorting into curves where the waves, pressed against each other, bend the center wave-form almost circular. In the following layers, the pinched wave has cancelled altogether and the surrounding wave-forms have joined, stretching wavelengths to close the gap.
A similar wave cancellation has occurred in the next image. Here the center wave-form is cancelled by neighboring wave-forms, and they have expanded to fill the wavelength. A diagonal shock line appears cutting the mountain where the cancellation occurs. It crosses in a step-wise fashion, a few layers at a time, causing it to zig-zag. Note the ruler straight shock lines that divide the adjacent triangular buttresses.
Complex Wave-forms . . .
Complexity is found within the shock fronts, inside the triangles themselves, as pressure and density variations.
Note the density variations form a circular feature near the top of this Schlieren image. The same feature is on the distorted triangular buttress found in Northern Arizona, shown below.
Also, note how the edges of the triangle draw in towards the circle, just as the waves near the top in the Schlieren image do. The three small buttresses below the hole show a striking similarity to the size and location as those on the wave-forms in the same position in the Schlieren image.
Here is another hole created in a triangular buttress. This one is in Iran.
The Lambda Foot . . .
This road cut is in Iran and is sometimes described as the slip fault that created the ‘horst-graben’ or basin and range region where this is found.
That isn’t the case. This slice in the ground was left by the primary, or incident shock (left side of the ‘V’) and its reflected shock (right side of the ‘V’).
This is the boundary region where the initial shock meets and reflects from the ground. The incident shock curves sharply downward, and the reflected shock is nearly straight. Where the reflected shock and incident shock meet, there is a feature called the lambda foot.
Note, the incident shock curvature and the particular dip of the sedimentary layers within the ‘V’. They are similar to the angled transmitted shocks shown in the ‘V’ of the diagram. Here is another image with a broader view. In this view, the lambda foot is easier to discern.
Also, a feature not originally shown on the diagram, the cut in the center top of the ‘V’ results from a shock that curves downward, normal to the expanding corner of the reflected shock, annotated in red on the “road cut” diagram.
This shock feature is along the side of a hill that can be seen stacking in layers to the left. It should define the outer boundary of the initial shock wave. If so, it should form a ring around the mountain. A similar ‘V’ shaped cut should be found on the opposite side of the hill. If true, the incidence angles, and distance between this ‘V’ and the predicted ‘V’ on the opposite side, hold information about the height of the apex of the passing wave.
Conclusions . . .
Harmonic repetition is undeniably evident on triangular buttresses — proof they resulted from a sonic shock event. It is proof they were created in a single, coherent event, and could not possibly be the result of time and erosion.
The other effects examined are particular to sonic shock waves as well. In Part Three, evidence for electromagnetic effects of the arc blast will be reviewed.
Additional Resources:
Electric Universe Geology: A New Beginning | Space News
The Arc-Blasted Earth | Space News
Arc Blast — Part One | Thunderblog
Andrew Hall is an engineer and writer, who spent thirty years in the energy industry. He was a speaker at the EU2016 conference and can be reached at [email protected] or https://andrewdhall.wordpress.com/
Disclosure: The proposed theory of arc flash and arc blast and their effects on the landscape are the sole ideas of the author, as a result of observation, experience in shock and hydrodynamic effects, and deductive reasoning. Dr. Mark Boslough’s simulation of an air burst meteor provided significant insight into the mechanism of a shock wave. His simulation can be viewed on YouTube: Mark Boslough. The author makes no claims that this method is the only way mountains or other geological features are created.
The ideas expressed in Thunderblogs do not necessarily express the views of T-Bolts Group Inc or The Thunderbolts ProjectTM.
Arc Blast — Part Three
Arc Blast – Part Three
By Andrew Hall
In Part One of this series, we looked at how arc blast creates a mountain. We examined triangular buttresses on mountainsides and how they conform precisely with the characteristics of reflected shock waves. In particular, we looked at layering, compression and expansion of the wave-forms.
In Part Two, we looked at evidence of harmonics, wave-form instabilities and boundary layer effects that are imprinted on the landscape.
In this article, we’ll take a closer look at layering and electromagnetic influences.
Electromagnetic Effects . . .
The stratified layers of triangular buttresses are often segregated by mineral composition. This is evidence of electromagnetic forces. The arc flash that creates the mountain is essentially a lightning bolt, traveling in an ionized double layer in the atmosphere. An electric field will ionize particles. A magnetic field will sort them. An arc flash necessarily has an electromagnetic field surrounding it.
In fact, the arc is just the intense current flow of electrons at the core of the electromagnetic field. The field itself expands away from the core with the shock wave.
The shock waves are energized with current. The shock wave is a highly stressed region – a dramatic shear zone of pressure, density and temperature the ionized winds can’t penetrate. Ionized material flows with the winds in the low stress triangular region between the shock waves. The shock wave itself is a conduit for current. Current coursing through thin shock waves molds the electromagnetic fields in the coherent form of the reflected shock and sorts material according to its dielectric properties.
Blowouts . . .
Another dramatic signature of an electrical nature is a feature called a “blowout.” Blowout occurs when the arcing current makes direct contact with the ground.
The arc flash follows the most conductive path available. It travels in the ionized atmosphere, especially in arid regions where soils are dry and non-conductive compared to the ionized atmosphere above ground. When a conductive surface feature is available, the arc will fork to ground.
The conductive feature may be a mineral deposit, or water in a stream, aquifer or wetland. The result is a crater that blasts away a portion of the mountain being formed. The images below show a blowouts in the center of a mountain. It is apparent the crater significantly modified the form of the mountain.
Expansion Fans . . .
The images to follow are from a complex formation of astroblemes in Iran. They are on the outside, or convex bend, in a large mountain arc.
One unusual crater shows shock effects as the apparent arc trajectory changes. The feature annotated is an example of an expansion fan, which is a set of reflected waves that occur on the outside of a bend (convex) when the source of the shock makes a change in direction. The fanning shock waves have produced linear hills that radiate from the bend.
Ejecta and Ablation Zones . . .
Material ablated from the blast forms layered hills and pressure ridges on the surrounding area. Layering indicates material was blown away from the blast, instead of being drawn toward it by the suction of the mushroom cloud. Evidence of high speed winds is seen where they form fingers of conical flow, dunes and pressure ridges.
Summary. . .
Let’s recap what we have seen:
- Triangular buttresses form on the sides of mountains in the shape of reflected supersonic shock waves.
- They are layered onto the mountain; so, they are not caused by seismic waves.
- They are not layered sediments from an ancient beach, or waterway since the sharply angled triangles are a consistent feature around the world and do not conform to any motion of random water waves.
- They are formed in all types of rock, including granite; so, they are not formed by eons of normal winds.
- The triangular wave-forms exhibit compression and expansion from superimposed longitudinal and transverse waves.
- The triangular wave forms exhibit harmonic repetition consistent with reflected shock waves.
- The triangular wave-forms exhibit super-positioning and cancellation under compression consistent with reflected shock waves.
- The triangular wave-forms are parallel to the primary shock pattern, consistent with reflected shock waves and perpendicular to the wind direction, consistent with supersonic winds created by a shock wave,
- The triangular wave-forms exhibit less energy and more transient effects on softer substrates, and higher energy and sharper, more defined angles on hard substrates.
- Triangular wave-forms exhibit transient reflections, normal shocks and features of density variation consistent with supersonic reflected shock waves.
- The blast zones show concentric rings of pressure ridges, layered in the direction of the winds.
- The winds within the blast zone are directed normal to the central mountain, or crater (outward blown winds,) as indicated by surface layering on pressure ridges and buttresses.
- Boundary layer features of reflected waves can be found in the substrate of the blast zone as seen in the road cut in Iran.
- Land surrounding the blast zone is blanketed with ejecta that exhibits flow patterns from high speed winds.
This concludes the Arc Blast series of articles on reflected shock waves and their significance. Future articles will examine more evidence for the effects of arc flash on the landscape:
- The ‘rooster tail’ and how big mountains are built
- Following winds and how Kelvin-Hemholtz instability can modify a mountain ridge
- Complex mountain forms and mountain arcs
- The interrelation between volcanoes and mountains
- The connection between shock waves, fractals and Lichtenburg landscapes
- How rocks form
- The cause and nature of an arc flash
- Sub-sea canyons, trenches and rifts
- Examples from the archaeological and mythological records of mankind
What is proposed here can be verified. In fact, mountains are the most tangible evidence for the Electric Universe model available. The evidence is under our feet. There are already reams of geologic data waiting to be re-interpreted. Geophysics, applied to evaluate geology as the consequence of electromagnetic and hydro-dynamic forces, will some day bear this out. You may even have the ability to bring that day closer. Your comments are invited.
Additional Resources by Andrew Hall:
Electric Universe Geology: A New Beginning | Space News
The Arc-Blasted Earth | Space News
Surface Conductive Faults | Thunderblog
Arc Blast — Part One | Thunderblog
Arc Blast — Part Two | Thunderblog
Andrew Hall is an engineer and writer, who spent thirty years in the energy industry. He was a speaker at the EU2016 conference and can be reached at [email protected] or https://andrewdhall.wordpress.com/
Disclosure: The proposed theory of arc flash and arc blast and their effects on the landscape are the sole ideas of the author, as a result of observation, experience in shock and hydrodynamic effects, and deductive reasoning. Dr. Mark Boslough’s simulation of an air burst meteor provided significant insight into the mechanism of a shock wave. His simulation can be viewed on YouTube: Mark Boslough. The author makes no claims that this method is the only way mountains or other geological features are created.
The ideas expressed in Thunderblogs do not necessarily express the views of T-Bolts Group Inc or The Thunderbolts ProjectTM.