Credit: NASA/HST
Of all the features on the lunar landscape that are commonly identified as “impact craters”,
the most prominent is the crater Tycho in the Southern hemisphere.
Mar 08, 2006
Lunar Craters—a Failed Theory
When seeking to test a hypothesis, it is helpful to start with clear and undeniable facts. But when the impact theory is applied to the prominent lunar “rayed crater”, Tycho, the theory fails even the most obvious tests.
Certainly the most conspicuous crater on the Moon is Tycho in the southern hemisphere. (For context, we have placed a full Hubble Telescope image of the Moon here). The crater is some 85 kilometers in diameter, displaying enigmatic “rays” that extend at least a quarter of the way around the moon.
The central peak, said to have been formed by a “rebound” of subterranean material, rises about 2 kilometers above the crater floor. Planetary scientists suggest that the flat floor of the crater (seenhere) was formed by the pooling of melted material.
But the idea that an impact would create such an extensive pool of molten rock finds no support in impact experiments or in high-energy explosions. Not even an atomic explosion creates a flat melted floor of this sort. The force of the explosion shocks and ejects material. It does not hold the material in place to “melt” it into a lake of lava.
When the brilliant engineer, Ralph Juergens, considered the lunar craters Tycho and Aristarchus, he noted the distinct features of electrical discharge. He wrote in 1974, “…If Aristarchus and Tycho were produced by electric discharges, their clean floors would be just about what one would expect. The abilities of discharges to produce melting on cathode [negatively charged] surfaces and generally to ‘clean up’ those surfaces have been remarked upon since the earliest experiments with electric discharges”.
Juergens envisioned an interplanetary arc between the Moon and an approaching body (for his analysis, he summoned the planet Mars). While an instantaneous explosion does not have time to create a lava lake, an electric arc involving a long-distance flow of current between two approaching bodies, “would persist beyond the instant of any initial touchdown explosion”, leaving material melted in place.
Juergens saw Tycho as a “cathode crater”, and he drew special attention to Tycho’s “spectacular system of rays”. These, he suggested, are the very kind of streamers an electrical theorist would look for—a signature of the electron pathways that triggered the Tycho discharge.
Of course, the astronomers’ consensus today is that the streamers are the trails of material ejected from the crater into narrow paths over extraordinary distances. But the “rays”, Juergens noted, have no discernible depth, while material exploding from a Tycho-sized crater “would at least occasionally fall more heavily in one place than in another and build up substantial formations. But no one has ever been able to point out such a ray ‘deposit’”.
The presence of the narrow rays over such long distances, according to Juergens, is “all-but-impossible to reconcile with ejection origins. Enormous velocities of ejection must be postulated to explain the lengths of the rays, yet the energetic processes responsible for such velocities must be imagined to be focused very precisely to account for the ribbon-thin appearance of the rays”. In fact, this challenge has found no answer in more recent scientific exploration. No experimental explosion at any scale has ever produced anything comparable to the well-defined 1500-kilometer “rays” of Tycho.
Even more telling is the fact that the rays are punctuated with numerous small craters. An early explanation was that "some solid material was shot out with the jets and produced 'on-the-way' craters". But such narrow trajectories for secondary impactors are an absurdity under the mechanics of an explosion. And the total volume of ejected material needed to form the secondary craters along Tycho's rays, would amount to some 10,000 cubic kilometers – an amount of material entirely inconsistent with careful measurements indicating that practically all material excavated from Tycho's crater has been deposited in its rim. However, the ray elements, terminating on small craters, are the very markers that today’s electrical theorists have cited repeatedly as definitive evidence of an electrical discharge path. As Wallace Thornhill has so often observed, such discharge streamers frequently terminate at a crater. In fact, this is exactly what Gene Shoemaker found when investigating the puzzles of Tycho—"...many small secondary craters, too small to be resolved by telescopes on earth, occur at the near end of each ray element."
When compared to an imagined sphere of the Moon’s average radius, the surrounding highland region occupied by Tycho is more than 1200 meters above the “surface” of that sphere. The crater site appears to be at the summit, or very close to the summit, of terrain that trends downward in every direction away from the site for hundreds of kilometers. For the impact theory, this location can only be an accident. But for the electrical theorists, the elevation on which Tycho sits is not accidental. Lightning is attracted to the highest point on a surface. (That is, of course, the principle behind lightning arrestors placed on the pinnacles of tall buildings).
Though astronomers see Tycho’s rays as material ejected from the focal point of an impact, a mere glance at the picture above is sufficient to make clear that not all of the streamers radiate from a central point. Is this surprising? A mechanical impact has a single focal point and cannot explainthese offset rays. Juergens noted that they "diverge from a common point, or common focus, located on or buried beneath the western rim of the crater." The electrical interpretation of Tycho sees the streamers as paths of electrons rushing across the lunar highlands to the highest point, where it launches into space to form the lightning "leader" stroke. The high point is destroyed in the process. The powerful lightning "return stroke" that forms the Tycho crater comes minutes afterwards and focuses on the nearest high point, a few kilometers to the east. In support of this explanation, the crater Tycho is surrounded by a dark halo of ejecta that blankets the extensive ray system, laid down earlier.
Tycho's crater rim rises about one kilometer above the surrounding terrain and the crater walls exhibit terraces (shown here) that are not characteristic of high energy explosions. However, such terracing isobserved in innumerable instances of electrical discharge machining. (See the large terraced crater in the picture on the right here). This terracing may be due to the fact that electrical current flows in plasma in the form of twisted filament pairs – rather like a double helix. So the terracing is caused by the cutting action of the rotating current filaments on the crater wall. Indeed, some lunar craters exhibit bilateral corkscrew terracing – another observation inexplicable by the impact model, but remarkably consistent with the principle of an arc constituted of twin rotating “Birkeland Currents”.
While it is possible to get a “rebound peak” close to the center of an explosion, such a peak is not typical. In the electrical cratering experiments by plasma physicist CJ Ransom, (as seen here) central peaks were often the norm. As long ago as 1965, attention was drawn to the similar incidence of craters with central peaks in lunar craters and laboratory spark-machined craters. They seem to be an effect of the rotating current filaments, which may leave the center of a crater relatively untouched.
The electrical theorists find great irony in the many examples of earlier researchers who pointed to the electrical properties of phenomena that official science eventually learned to ignore. In 1903, W. H. Pickering, in his book The Moon, suggested that electrical effects could account for the narrow paths of Tycho’s “rays”, and he drew a direct comparison to the streamers seen in auroral displays. But as occurred so frequently in the twentieth century, evidence of electrical activity in space was ignored because it found no place in gravitational cosmology or in the curricula of astronomers and geologists.
picture of the day archive subject index
Credit: NASA
Two prominent craters on the Moon appear in this photograph taken from orbit during the Apollo 15
mission. The large bright crater toward the center is Aristarchus. On the right is the crater
Herodotus, from which extends the great rille of Schroeter’s Valley (a subject of the next article
in this series).
Mar 10, 2006
Lunar Craters—a Failed Theory (2)
The Puzzles of AristarchusThe crater Aristarchus, pictured above, stands out in all Earth-based telescopic images of the Moon. Of the larger formations on the Moon, this rayed crater is considered the brightest. It is also distinguished from its surroundings by its elevation on a rocky plateau rising more than 2 kilometers above the dark “mare” of Oceanus Procellarum. For context, we have circled the Aristarchus scar on the Hubble image (large) placed here.
In the Hubble image we see the crater Tycho, a subject of our previous submission, dominating the southern face of the Moon. Well to the north of Tycho is the second most dramatic feature of the Moon, the impressive spidery scar of Aristarchus, covering a much greater area than one might suspect from close-up images of the crater itself. For further context, a darker image we have placed here shows the relationship of the crater itself to the extended filamentary “rays”.
As can be seen most clearly in the Hubble image, the rays or streamers do not all radiate directly from the crater, and they are not linear. These two facts, undeniable on direct observation, make clear that the streamers are not ejecta. Additionally, the close-up images of the crater (as in our picture above) show that many if not all the “rays” are not deposits of ejecta but depressed channels, as if material has been removed from the bright paths by the very event that produced the crater.
Yet strangely, the idea of ejecta from Aristarchus remains the standard explanation. An artificial convergence of scientific opinion has enabled theorists to look past essential and obvious details that challenge the established perspective.
It can be disconcerting to realize that things either ignored or forgotten by astronomers and planetary scientists include countless pointers to a new and far more unified foundation for planetary science. In fact, evidence of past electrical events on the Moon was noted very early in the twentieth century. (See “”Lunar Craters—A Failed Theory”)
More than forty years ago the British journal Spaceflight published the laboratory experiments of Brian J. Ford, an amateur astronomer who suggested that most of the craters on the moon were carved by cosmic electrical discharge. (Spaceflight 7, January, 1965).
In the cited experiments Ford used a spark-machining apparatus to reproduce in miniature some of the most puzzling lunar features, including craters with central peaks, small craters preferentially perched on the high rims of larger craters, and craters strung out in long chains. He also observed that the ratio of large to small craters on the Moon matched the ratio seen in electrical arcing.
In 1969, just prior to the first Moon landing, Immanuel Velikovsky suggested that rayed craters on the Moon were the result of electric arcs—cosmic thunderbolts. Since terrestrial lightning can magnetize surrounding rock, Velikovsky predicted that lunar rocks would be found to contain remanent magnetism. Astronomers saw no reason to consider such possibilities, and they were caught by surprise when lunar rocks returned by Apollo missions revealed remanent magnetism.
In 1974 the engineer Ralph Juergens published two groundbreaking articles arguing that major features of both the Moon and Mars were electrical discharge scars. Juergens drew attention to both Tycho and Aristarchus on the Moon, suggesting that these features display the unique attributes of cosmic thunderbolts. First, there are the long linear streamers that mark the paths of electrons rushing across the surface toward a regional high point. This is the event that provokes the leader stroke of a discharge. Then, the explosive discharge from a more intense return stroke excavates a crater surrounded by an electrical discharge effect called a “Lichtenberg figure”, a pattern well known in industrial applications of electric discharge.
To illustrate the point, we’ve placed a picture here showing the effect of a lightning stroke on a golf course. The resulting Lichtenberg figure displays a typical “dendritic” pattern (as in the branching of a tree or a drainage system). From the circumference of the figure any filamentary “dendritic” path can be followed back to the discharge point.
On the Moon, in the case of Tycho, Aristarchus, and numerous lesser instances as well, we see Lichtenberg figures superimposed upon the longer linear rays tracing the electron paths that preceded a cosmic discharge. The long linear paths are often slightly “displaced”: In electrical terms they would not be expected to stand in a strictly radial relationship to the focal point of the subsequent discharge.
But the paradoxes of scientific perception abound. On the Moon, the Lichtenberg pattern is supposed to mark the trails of debris from an impact explosion. But we see similar Lichtenberg patterns elsewhere in the solar system, and in these cases the accepted “explanations” take us in opposite directions. The entire equatorial region of Venus is covered with effusive Lichtenberg figures, as can be seen in the pictures here and here. These extraordinary patterns are claimed to signify flowing lava—though for this interpretation to hold one has to believe that the familiar dendritic “drainage” was reversed, with the branching occurring downstream: Lichtenberg figures do not make good drainage patterns from the center outward!
Lichtenberg patterns are also present on Saturn’s moon Titan. Here they are said to be “drainage channels” for liquid methane, though we have challenged that interpretation in a previous Picture of the Day. (The connection between the patterns on Titan and Venus was also the subject of an earlier Picture of the Day, “Titan’s Big Sister”).
The value of the Lichtenberg figure is that it is easily and definitively distinguished from the radial pattern of exploding ejecta. Ejecta follow neither fine linear nor dendritic paths. But electrical arcs do, and that is the nature of the most prominent “blast” patterns on the Moon. Look at the Hubble picture again to see if the longer, slightly displaced radial paths, together with superimposed Lichtenberg patterns, are in fact the case. Once discerned, the truth of the matter is impossible to miss.
picture of the day archive subject index
Credit: NASA
The lunar “sinuous rille”, Schroeter’s Valley.
Mar 15, 2006
The Moon and Its RillesPlanetary scientists describe it as a stupendous channel cut by flowing lava. But on closer examination, Schroeter’s Valley and its many counterparts on the Moon refute all attempts to categorize them in such terms.
The long, winding channel pictured above is the most prominent “sinuous rille” on the lunar surface—160 kilometers long and up to 10 kilometers wide—large enough to be clearly visible in Earth-based telescopes. It is also up to 1300 meters deep—a profound contrast to any observed effect of flowing lava on Earth.
Long prior to the space age, Schroeter’s Valley was the subject of many speculations. But crucial details were unknown until the Apollo lunar exploration missions in the late 60s and early 70s, when orbiting craft enabled astronauts to take high-resolution pictures of the lunar surface. The photographs in the composite shown here were taken from the Endeavour Command Module of Apollo 15.
The seven frames look approximately south, revealing the crater called “Cobra Head” at the upper left, from which emerges a winding path that narrows until it disappears on the right. Only the edge of the crater Herodotus is seen at the top of the composite. (An image of Herodotus can be seen along with the famous crater Aristarchus in our March 10 Picture of the Day.
Sinuous rilles are defined as long, winding valleys, usually with steep walls and often emerging from a crater. Of these phenomena, the Moon presents countless examples at all scales. Two instances will be seen in the lower portion of our March 10 picture.
Early speculations based on telescopic observation envisioned “cracks” on the lunar surface. Then the astronomer William Pickering suggested flowing water. A series of other speculations followed, most of them excluded by the findings of the Apollo missions, until planetary scientists eventually settled on flowing lava as the agent. The “standard theory” today states that sinuous rilles were created by lava either flowing across the surface or beneath the ground to form a “lava tube”, portions of which eventually collapsed.
A considerably larger version of the above picture can be seen here, and unless you are already certain that such formations are well understood by planetary scientists, it is worth the look. The enigmas and contradictions of standard theory lie in details impossible to deny.
Both the width and length of the Schroeter’s Valley far exceed anything ever accomplished by lava on Earth. But the reverse should be expected. On the Earth, the atmosphere is insulating, allowing lava to retain its heat. In the vacuum of space, heat will be much more rapidly radiated away. On Earth, as lava flows for long distances (counted at most in a few tens of kilometers, not hundreds), the cooling at the surface causes a “roof” to form. It may then continue to flow as a “tube” beneath the surface. That is the only way the lava tube can achieve these comparatively modest lengths.
In an earlier Picture of the Day we showed the longest terrestrial example of a lava tube on Earth, associated with Barker’s Cave in Australia. It is 35 kilometers long and only about 35 meters in height. The contrast to the much larger lunar rilles could not be more stark And the only reason the Barker’s Cave lava tube could achieve its length is that, when the insulating crust was formed, the lava was able to retain its heat and continue flowing beneath the surface. No such event occurred in the case of Schroeter’s Valley: It would be impossible to sustain a kilometers-wide roof of rock; and there is no evidence of either a roof or of rubble from a roof’s collapse.
The moon has only about one sixth the gravity of the Earth, and it is gravity that gives flowing liquid its velocity, its erosive force and (most emphatically in the case of heated and melted rock) its ability to cover distance. Yet lunar rilles extend up to 300 kilometers—almost nine times the length of the “record breaker” on Earth.
The walls of Schröeter’s Valley are both steep and deep. But where did all of the lava go? A short-lived channel of water might narrow to a termination point without any overflow or outflow—it could simply be absorbed into the ground or evaporate into space. But flowing lava eating away surface material to cut a deep channel would have to show up somewhere. We should see either breeches in the deep walls or evidence of abundant outflow. But instead, the channel simply dwindles until it disappears. In considering the picture above, it is essential that one realize what planetary scientists themselves acknowledge: The rille did not create the maria in which it sits. It cuts through the pre-existing maria. It is as if the material that once occupied the channel simply disappeared.
The “flowing lava” seems to have possessed many remarkable features. Even as it cut so deep (nothing comparable will be seen in any lava flow on Earth—not even at the much smaller scale of terrestial lava flows), this rapidly moving, molten rock, could make turns up to 90 degrees without affecting the “bends in the river” in any way. Neither the extreme sinuosity nor the parallelism of the rille walls conforms to the behavior of lava erosion.
Consider, for example, the sharply pointed prominence in the most emphatic change of direction about a third of the way down the rille from Cobra head. If the lava had the power to create such vertical cliffs—up to 1300 meters deep—how did that sharp prominence survive?
Curiously, the "flow" of rilles on other worlds isn't limited to "downhill" like lava and water-carved channels on Earth. All fluid-erosion theories have chosen to ignore that the apparent mouth of the “stream” is on high ground, and the narrowest part of the channel is on lower ground. The situation should be exactly reversed. As an erosion channel lengthens, more and more spoil must be carried by the eroding fluid, and the channel must grow wider to accommodate the load. The cross-sectional area of any fluid stream must remain constant. Where it is deep it must be narrow, where it is shallow it must be wide. However, rilles do not conform to this rule. The famous Hadley's Rille, amongst others, simply disappears for a short interval, then reappears. Other rilles travel both up and down across considerable distances. The most extraordinary example is the Baltis Vallis on Venus, which rises and falls dozens of times, with some two kilometers separating its high and low points along its 6,800 kilometer length.
Once again, it is the things barely noticed, or forgotten, that provide the most telling clues. Within the meandering channel of Schroeter’s Valley is a much more narrow secondary rille. While planetary scientists are well aware of this rille-within-a-rille, almost nothing is said about its defining feature—a chain of small craters running virtually the entire length of the rille. Yet this feature is not uncommon. A nearby rille, Rima Prinz I reveals the same “preposterous” characteristic.
As a rule, the lunar rilles are much more heavily cratered than the surrounding maria, yet by their very presence on the maria they must be younger. Standard dating by “crater count” becomes preposterous. But what is the meaning of this non-random concentrations of craters along the rille’s paths?
The inseparable link between crater formation and rille formation—though substantiated on planets and moons throughout the solar system—becomes highly confused in standard treatments of the subject. Nevertheless, a unified answer has been available for decades, and the credibility of science may, in fact, depend on it.
picture of the day archive subject index
Credit: NASA
Hadley Rille on the moon, a long meandering channel, spans some 125 kilometers
(75 miles). On the right, a close-up look at a small section of Hadley.
Mar 17, 2006
The Moon and Its Rilles (2)
The Rilles Are ElectricThe surface of the moon is replete with long channels or grooves that continue to create unsolved puzzles and contradictions for geologists. Every traditional theory, when tested against the photographic evidence, has failed.
It has now been more than thirty years since the Apollo missions produced voluminous and compelling images of the lunar surface, and it is clear that theory has not kept pace with the unanswered questions.
To make our point, we have emphasized the most prominent lunar features, sufficiently documented photographically to place certain details beyond doubt. We considered the most famous lunar crater Tycho. We considered the moon’s most prominent crater, Aristarchus. We also looked at the spectacular Schroeter’s Valley, a “sinuous rille” with many lesser counterparts lying on the lunar maria.
Another channel that gained much attention during the Apollo missions is Hadley Rille (pictured above), explored by the Apollo 15 astronauts in 1971. The channel winds across some 125 kilometers (75 miles) of lunar maria. It is almost 400 meters deep (1300 feet, or one quarter mile) in places, and almost 1500 meters (one mile) wide at its widest point. Planetary scientists often say that it was formed by molten lava, and they draw comparisons to lava channels in Hawaii. But the differences between the two are so profound as to render such comparisons meaningless.
Many have suggested that Hadley is a “collapsed lava tube”, something much different from an empty surface channel of lava. As flowing lava cools, it will begin to develop a crust, and eventually a stationary “roof” may form over it. A lava tube has the advantage that it enables lava to retain its heat as it flows underground, thereby covering greater distance and collecting less debris from surface cooling. The flowing lava can produce relatively continuous and smooth walls, while a surface channel of lava, because it is continually creating its own obstructions by cooling, with subsequent overflow, will typically meander chaotically across its own debris field. Hadley does not show this appearance at all. (Compare the lava rivers here and here.
On Earth we know that the collapse of lava tube roofs is not uncommon, and the area collapsed will be a rubble-filled depression. When the European Space Agency’s Smart 1 spacecraft took an image of Hadley, the popular science website Universe Today reportedthat Hadley is “probably a collapsed lava tube”.
But no lava tube on Earth comes close to such dimensions, and that is only the beginning of the problem. The rubble left from a collapsed lava roof is impossible to miss. And we’ve seen enough of Hadley in high resolution to categorically exclude the lava tube interpretation. As shown by the close-up of a section of Hadley above (right), there is norubble, no collapsed roof. Hadley is an empty, sharply-cut channel. Whatever once lay within the cavernous depths of Hadley is no longer there.
In recent years some theorists have drifted back toward the idea of flowing rivers of lava on the lunar surface. But rivers of lava do not produce a narrow secondary rille constituted from a stream of craters along the length of the larger rille (e.g., Schroeter’s Valley). Over comparatively short distances and times, rivers of lava produce obstructing cooled material and overflow their banks to produce layers of oozing material that freezes in place and whose source is obvious. They repeatedly change course, and undercut the surface along the walls of new pathways, leaving in their wake a vivid display of their erratic behavior. (See pictures noted above). Hadley reveals no such behavior, retaining consistent width over great distances, with parallel sides, while lava rivers show just the reverse. Hadley reveals no explicit overflow or outflow. It is just an empty channel that, enigmatically, grows more narrow as it meanders across a relatively flat valley floor.
Significantly, well-qualified specialists acknowledged the definitive failure of the common theory more than thirty-five years ago. In 1970, University of Pittsburgh scientists Bruce Hapke and Benn Greenspan, based on Lunar-Orbiter photographs showing strings of craters along the floors of lunar rilles, acknowledged that such craters could not all be impact craters and must have something to do with the formation of the rilles. The direct evidence thus contradicts “those hypotheses for the origin of sinuous rilles by simple down-cutting by a moving fluid." (Report published in EOS Transactions, American Geophysical Union (51), 1970
One explanation of Hadley and other lunar rilles has yet to be considered by planetary scientists. It is the one explanation that does not produce contradictions, or conflict in any way with what we see on the moon. Engineer Ralph Juergens, who investigated a new approach to sinuous rilles, suggested in 1974 that they are the effects of “electrical discharge”. Juergens’ work, in turn, helped to inspire the lifelong explorations of today’s leading electrical theorist, Wallace Thornhill, who has taken the investigation into new areas of research opened up by more recent explorations of our planetary neighbors.
Juergens undertook a dispassionate and meticulous comparison of explanations offered for sinuous rilles. He identified the logical tests and found that prior theories discussed by planetary scientists failed. And most failed on grounds that rationally exclude the proposed explanation. (We have placed Juergens comparative chart here.
Juergens knew that an electric discharge of the magnitude implied would require an approaching charged body—and not a just a small rock but another planet or moon. “The electric field between anode and cathode [positively and negatively charged bodies] must build to an intensity great enough to "pull" electrons from the cathode by sheer force, … tearing electrons from non-conducting lunar crustal materials and in numbers sufficient to trigger an interplanetary discharge”.
The events as he envisioned them would begin with an electrical breakdown comparable to that of an exploding capacitor, as electrons begin to dissociate from their atoms to become the vehicles of an ensuing discharge. The breakdown point will be a region of maximum stress, most likely a local prominence.
“In a flash, the tiny breakdown point becomes a breakdown path propagating itself outward from the starting point, turning this way and that as the intense field at its tip probes for weaknesses in the rock strata”. Breakdown generates heat and explosively expanding plasma beneath the surface. In much the same manner that a powerful lightning strike can excavate a trench, the breakdown channel “tears hundreds of kilometers across the lunar surface at lightning speed”.
Then, as the onrushing electrons reach the local high point the resulting electric surge blasts out a large crater. At virtually the same time, more distant electrons along the breakdown path, encountering an electric field stronger than that of the underground path, “blast upward short of the main terminus, creating secondary on-channel craters at numerous points.
Juergens hypothesis was based on secure knowledge of the behavior of electric arcs. The fundamental mechanics can and have been verified in the laboratory. (See, for example, the path of the electric arc shown here, with a secondary rille or crater-stream running down the main channel).
The hypothesis can also be systematically weighed against the present library of data on the lunar surface, including the profusion of glassy spheres in Hadley Rille, and the anomalous presence of remanent magnetism. And here nothing will prove more compelling than the essential link of rille-producing activity to crater-producing activity—the very consideration that marked the failure of the lava-channel and collapsed-lava-tube hypotheses.
picture of the day archive subject index
Credit: ESA/Space-X
This SMART-1 picture of Hadley Rille offers the best look yet at a deep gash cutting across Hadley (far left).
Mar 21, 2006
The Moon and Its Rilles
A Partnership of Craters and RillesIn the history of lunar exploration, the mysterious association of craters and rilles has provoked a number of mutually contradictory hypotheses, none of which is sufficient to explain things seen in high-resolution pictures of the Moon.
In our previous looks at the lunar craters Tycho and Aristarchus, we observed that the popular “explanation” (the impact hypothesis) is contradicted by features that, in close-up photographs, invariably leap out at the critical observer.
Similarly, when we consider details of the “sinuous rilles” Schroeter’s Valley and Hadley, we discover that common teachings require things that are not there while ignoring things that are there.
The message conveyed by these prominent lunar features carries broad implications for our understanding of the lunar surface at all scales of observation. Our claim has been that theoretical assumptions in planetary science—including the most popular teachings in lunar geology—cannot withstand a critical review.
Yet there is a vantage point from which the accumulated anomalies and contradictions disappear. The electric hypothesis does not arbitrarily separate issues of crater formation from issues of rille formation. In one instance after another, we see that craters and rilles stand in a partnership that is far too pervasive to be accidental. And this convergence is predictable under the electric hypothesis.
Dominating craters on the Moon are surrounded by non-radial crater chains, irregular concentrations of smaller craters, sinuous or filamentary channels, and deep gashes—the very features seen in electrical arcing experiments and in electrical discharge machining in industrial applications. To underscore these surface patterns on the Moon, we have placed two large images of the Euler Crater region here and here. (The files are large—1.5mb and 1.8mb respectively—but they are worth the look).
The pictures show innumerable small crater concentrations, crater chains, and gashes, one form merging with another in every imaginable way. A modest number of the gashes might be mistaken for impacts at oblique angles, were it not for the repeated instances in which the gashes are constituted of overlapping craters, or are too long, or change direction—attributes that exclude “explanation-by-impact”. In this sense, an unbending adherence to the impact theory can only encourage theorists to ignore these defining features on the lunar surface.
The standard picture only grows more incoherent when we consider the numerous rilles and enigmatic channels that are conventionally “explained” as lava erosion. Why do they exhibit craters and crater chains of a sort never found in association with known remains of flowing lava? Look at the higher-resolution image we presented earlier of the Aristarchus regionhere. In the lower left of the picture is a rille that divides into twin channels, both of which end in large craters. Could this anomalous channel have been formed by flowing liquid of any kind? It is simultaneously a crater chain and a rille, confirming the point made repeatedly by the electrical theorist Wallace Thornhill: The same force that produces crater chains produces rilles.
Rilles often exhibit craters deeper or wider than the channels on which they are centered. For a good example, consider the picture of Rima Hyginus here. In many instances the larger craters centered on a rille appear at the “joints” of a meandering channel. Could they be “collapsed lava tubes,” a once-popular hypothesis? It is only necessary to look closely to see that these formations never reveal rubble from a collapsed “roof”.
Not infrequently, we also observe a secondary stream of smaller craters meandering down the rille, as we saw along the floor of Schroeter’s Valley. The electrical theorists point to analogs in both laboratory arcs and in lightning-excavated trenches. On the moon, a fascinating example is Vallis Alpes, a spectacular channel that extends some 166 kilometers, cutting across the mountain range Montes Alpes. Clearly, it was not cut by flowing liquid! See pictures here and here. Along its mid section it is about 10 kilometers wide. Meandering down the center of the flat valley floor is a narrow rille punctuated by circular craters.
Inexplicable gashes emerging from craters or converging with crater chains are ubiquitous on the lunar surface. Our picture of Hadley Rille above, recently taken by the ESA SMART-1, shows an “inexplicable” gash on the far left. The long and deep gash emerges from the narrow end of a balloon-like crater to cut across Hadley. It certainly has no explanation in standard theory, and most lunar scientists simply address it as a “gash” and go on to something they “understand”.
To put all of this in perspective, we must remember that the craters, rilles, crater chains, and gashes on the Moon can now be systematically compared to analogs on other bodies to see whether scientists have been able to forge a coherent interpretation. We find that, as the quality of the pictures has improved, the interpretations have grown increasingly fragmented and bizarre. For a telling comparison of the lunar enigmas to those presented on another body, look at the so-called “collapse pits” on the Martian “volcano” Arsia Mons. All of the lunar enigmas are there in one place—craters, crater chains, gashes, and rilles—except that here the stunning clarity of the pictures gives common sense a distinct advantage. Are these formations the result of “surface collapse”, or has material been cleanly removed from the surface by a force unknown to planetary scientists? In a contest with the inertia of prior belief, common sense will surely win out in the end.